тел/факс:  +7 (495) 505 63 23   
г. Москва, ул. Авиамоторная, д. 12, офис 909

Информация

Основы объемного гидропривода


Объемный гидропривод сегодня широко применяется в машиностроении и стал неотъемлемой составной частью современных мобильных машин и промышленного оборудования. В технически развитых странах машину без гидропривода встретить почти невозможно. В России ситуация иная – здесь редкость отечественное оборудование с современным гидроприводом

Рис. 1
За что же так ценят в современном мире гидропривод? Прежде всего это наиболее простое преобразование крутящего момента первичного источника механической энергии (двигателя внутреннего сгорания – ДВС или электродвигателя) и передача гидравлической мощности гидродвигателям. Гидродвигатели преобразуют энергию потока рабочей жидкости (РЖ) в энергию выходного звена и передают ее исполнительным механизмам. Исполнительными механизмами в передаче энергии являются гидроцилиндры и гидромоторы. Первые служат для создания силы при возвратно-поступательном движении штоков, вторые – для создания крутящего момента на валу при вращательном движении.

Гидропривод дает возможность бесступенчато регулировать скорость движения и частоту вращения приводного ДВС, максимально использовать его мощность, повышать коэффициент использования, улучшать эксплуатационные качества машины. Небольшая инерционность обеспечивает хорошие динамические свойства привода, позволяет сократить время рабочего цикла и повысить производительность машины. В гидроприводе с высокомоментными гидромоторами передаточное число достигает 1000 и более, т. е. имеется возможность реализации больших передаточных чисел.

Легкость и удобство управления рабочими органами, которые характеризуются небольшими усилиями на рукоятках управления, создают комфортные условия труда машиниста. Применение направляющих распределителей с пропорциональным электрогидравлическим управлением исполнительными механизмами и регулирующих гидроаппаратов, управляющих давлением и расходом с пропорциональными электромагнитами, позволяет автоматизировать технологические процессы, выполняемые машинами. При установке микропроцессоров и подключении их к компонентам с пропорциональными электромагнитами можно автоматизировать рабочий цикл или весь технологический процесс, выполняемый машиной. Перед переходом на автоматическое управление оператор нажимает кнопку «памяти» и выполняет необходимую технологическую операцию вручную. Затем он включает кнопку «автоматический режим», и процессор по заданному алгоритму будет повторять этот режим работы. Машина в таких случаях работает с максимальной производительностью, а роль оператора ограничивается наблюдением.
Независимое расположение сборочных единиц гидропривода позволяет оптимально разместить их в машине. Надежно предохраняют от перегрузок приводного двигателя, гидросистемы, металлоконструкций и рабочих органов клапаны предохранительные, переливные, разгрузочные, разности давлений, тормозные и др., а также блоки клапанов. Пожалуй, это наиболее важное свойство объемного гидропривода. Компоненты гидропривода компактны, у них небольшая масса благодаря отсутствию в машине с гидроприводом таких традиционно применяемых деталей и механических узлов, как шестеренные и цепные редукторы, муфты, тормоза, барабаны лебедок, полиспастные блоки, канаты и другие быстро изнашивающиеся детали, требующие регулярного техобслуживания. У объемного гидропривода есть и недостатки, например его работоспособность и безотказность зависят от температуры окружающей среды, точнее – от вязкости и других свойств рабочей жидкости. 
По характеру движения выходного звена различают объемные гидроприводы вращательного, поступательного и поворотного движения, приводимые гидромотором, гидроцилиндром или поворотным гидродвигателем. По возможности регулирования различают гидроприводы регулируемые и нерегулируемые, по способу регулирования – с ручным и автоматическим управлением. В регулируемом гидроприводе скорость выходного вала может меняться. 
Принцип действия гидропривода основан на законе Паскаля, согласно которому внешнее давление Р, возникающее в результате воздействия на свободную поверхность жидкости, находящейся в замкнутом объеме, передается равномерно во все стороны. Значение давления зависит от величины силы F, направленной перпендикулярно поверхности поршня S, на которую действует сила: 

P = F/S. (1)

Если к сосуду с замкнутым объемом жидкости присоединить второй сосуд посредством трубы, то в соответствии с этим законом давление Р будет передаваться во второй сосуд и создавать усилие F на его стенки. Таким образом, в гидроприводе происходит передача усилия по трубопроводу на расстояние. В качестве примера на рис. 1 изображены два сосуда, закрытых поршнями 1 и 2 и соединенных трубопроводом 3. Сила F1, действующая на поршень 1 площадью S1, создает в системе давление

Р = F1/S1. (2)

Чтобы уравновесить это давление, во втором сосуде к поршню 2 надо приложить усилие F2 = PS2. Приравняв значения давления в уравнениях (1) и (2), получаем: 

F1/F2 = S1/S2. (3)

Из уравнения (3) следует, что усилия на поршнях прямо пропорциональны их площадям, а перемещения l1 и l2 обоих поршней обратно пропорциональны их площадям, т. е. соблюдается «закон рычага» – выигрывая в силе, в таком же отношении проигрываем в расстоянии, но можно получить значительный выигрыш в силе. Это поясняет одно из важнейших преимуществ гидропривода – способность передавать большую мощность при небольших размерах привода. Однако, перемещая поршень 1 на расстояние l1, вытесняем из него объем жидкости

V=S1l1. (4)

Этот же объем жидкости (если считать, что рабочая жидкость практически несжимаема) поступает во второй сосуд и перемещает поршень 2 на расстояние

l2 = V/S2. (5)

Из уравнений (4) и (5) получаем:

l1/l2 = S2/S1.

Подставив это отношение в уравнение (3), получаем:

F1l1 = F2l2. (6)

Уравнение (6) аналогично уравнению рычага 1-го рода. Это наглядно показано на схеме рис. 1, б. C помощью гидравлического рычага можно получить передаточные отношения больше в 10...50 и более раз, чем при помощи механического рычага.
Примером простейшей гидравлической системы является гидродомкрат. Для того чтобы поднять груз F2, в системе нужно создать давление Р = F2/S2 при усилии F1 на поршне 2 в соответствии с уравнением (3). Поскольку поршни круглого сечения, то 

F1 = F2(d2l/d2·2),

где d1 и d2 – диаметры соответствующих поршней.
Рис. 2



В современном гидроприводе источником энергии, создающим движение РЖ, являются насосы, приводимые от ДВС (преимущественно в мобильных машинах) или от электродвигателя (в стационарных промышленных установках). В зависимости от циркуляции РЖ гидравлические схемы подразделяются на разомкнутые и замкнутые. На рис. 2 приведены примеры наиболее часто применяемых принципиальных гидравлических схем с разомкнутым (рис. 2, а) и замкнутым (рис. 2, б) потоками. В разомкнутой (открытой) схеме гидропривода в рабочей позиции трехпозиционного распределителя 4 насос 2 всасывает РЖ из бака 1 гидросистемы и под давлением нагнетает ее в регулируемый гидромотор 5. Совершив полезную работу, РЖ возвращается в бак.
При перемещении золотника распределителя в обратную рабочую позицию меняется направление потока РЖ и соответственно направление движения штока цилиндра или направление вращения выходного вала гидромотора. В средней (нейтральной позиции) распределитель 4 с ручным управлением соединяет насос с баком гидросистемы, обеспечивая разгрузку насоса от давления. В нерегулируемых гидромашинах скорость перемещения штока гидроцилиндра или частота вращения вала гидромотора регулируется дросселированием потока РЖ в распределителе или с помощью регуляторов потока. 
В замкнутой (закрытой) схеме гидропривода РЖ нагнетается насосом в гидродвигатель, а оттуда возвращается непосредственно во всасывающую полость насоса, минуя бак. В гидроприводе с регулируемыми насосом и гидромотором направление и скорость вращения исполнительного механизма регулируются изменением рабочих объемов насоса или гидромотора или одновременно того и другого. В связи с объемными потерями в насосе и в гидромоторе во всасывающую гидролинию насоса РЖ поступает меньше на величину утечек, отводимых в бак по дренажной гидролинии. Для компенсации утечек РЖ в гидропередаче с замкнутым потоком устанавливают насос подпитки 7, который под давлением 0,7...1,5 МПа нагнетает РЖ в гидролинию низкого давления. Давление в гидролинии подпитки определяется настройкой переливного клапана 10.  
Под действием разности давлений в рабочих гидролиниях насоса 2 распределительный золотник 9 с гидравлическим управлением перемещается в положение, при котором гидролиния низкого давления соединяется с переливным клапаном. Таким образом, осуществляется постоянный обмен РЖ в замкнутом контуре и ее охлаждение. Предохранительные клапаны 3 позволяют перепускать рабочую жидкость из гидролинии высокого давления в гидролинию низкого давления и снижать динамические нагрузки при разгоне и торможении рабочего органа или ходового механизма машины. РЖ от насоса подпитки 7 поступает через фильтр 6 и один из обратных клапанов 8 в гидролинию низкого давления насоса 2, а ее избыток поступает на слив через распределительный золотник 9 и переливной клапан 10 в бак. 
Преимущества гидропривода с замкнутым потоком: 
• Значительно меньше объем РЖ, так как потребность в ней определяется рабочими объемами гидромоторов, а размеры бака выбирают исходя из подачи насоса системы подпитки, компенсирующей объемные потери насоса и гидромотора. 
• Избыточное давление на входе в насос обеспечивает его работу при максимальной частоте вращения, что позволяет применить насос меньшего рабочего объема (т. е. меньших типоразмера, массы и стоимости) и использовать объемный гидропривод в условиях холодного климата на масле МГ-15В. Кроме того, избыточное давление на входе в основной насос позволяет запускать в работу машину при температуре масла МГ-15В ниже –40 °С без разогрева РЖ. 
• Отсутствует контакт РЖ с окружающей средой, что исключает загрязнение гидросистемы, увеличивает ресурс гидропривода и периодичность замены РЖ. 
• Регулируемые реверсивные аксиально-поршневые насосы гидроприводов с замкнутым потоком позволяют менять направление вращения вала гидромотора без золотниковых распределителей, обычно используемых для этой цели в гидроприводах с разомкнутым потоком, и за счет этого повысить КПД гидропривода.


Гидроприводы с замкнутым потоком все больше применяют для исполнительных механизмов вращательного движения, например смесительного барабана автобетоносмесителя, привода лебедок автокранов, в буровых и колтюбинговых установках для кислотной промывки нефтяных скважин, в агрегатах для ремонта и освоения скважин, в трубоукладчиках, для привода подъемников, в самоходных катках и др. Особенно эффективно применение гидроприводов с замкнутым потоком в пневмоколесных машинах, в том числе с шарнирно-сочлененной рамой, для привода ходовых механизмов с двумя или четырьмя активными колесами в условиях бездорожья. 

Современные гидроприводы пневмоколесных машин оснащают электронной системой синхронизации (рис. 3), включающей функцию «гидравлического дифференциала». Максимальный крутящий момент, передаваемый от насоса на ведущие колеса, определяется степенью сцепления колес с грунтом. В случае слабого сцепления происходит потеря управляемости, а значит, преждевременно изнашиваются шины, расходуется лишнее топливо, повреждается верхний слой почвы. Электронная система синхронизации гидропривода отслеживает сцепление колеса с грунтом и перераспределяет крутящий момент между ведущими колесами. Синхронизацию гидропривода осуществляют бортовой компьютер 1, сдвоенный регулирующий клапан 2, датчик 3 положения руля (установлен в корпусе колонки рулевого управления) и датчики 4 частоты вращения приводных колес. Частота вращения каждого приводного колеса непрерывно измеряется цифровыми датчиками, установленными в задних крышках гидромоторов.  
Бортовой компьютер сравнивает полученные значения и ограничивает при необходимости через регулирующий клапан подачу РЖ в «проскользнувшее» колесо, которое начинает вращаться с большей скоростью. При стандартной электронной системе синхронизации на два приводных колеса в подводящем трубопроводе устанавливают один сдвоенный регулирующий клапан, который уменьшает расход РЖ и одновременно повышает давление насоса и в гидромоторе. Это обеспечивает устойчивое передвижение машины и предотвращает пробуксовку колеса. Как только частота вращения всех колес станет одинаковой, двойной регулирующий клапан снова полностью откроется, но он вновь закроется, если возникнет разность в частоте вращения колес. Этот процесс происходит непрерывно, чтобы обеспечить параметры, предусмотренные конструкцией машины. 
Применение гидропривода с замкнутым потоком в мобильной машине исключает необходимость в традиционных узлах и агрегатах – муфтах сцепления, коробках передач, карданных валах, тормозах (кроме стояночных), так как гидропривод выполняет функции тормозов и «гидравлического дифференциала». 
Чтобы обеспечить надежную эксплуатацию оборудования с гидроприводом в климатических условиях России, для объемных гидроприводов созданы специальные гидравлические масла, основными производителями которых являются Ново-Уфимский и Волгоградский нефтеперерабатывающие заводы, а также ПО «Омскнефтеоргсинтез». Согласно ГОСТу в гидроприводах используют два типа масел: МГ-15В и МГЕ-46В. МГ-15В (аналог ВМГЗ) для северных регионов страны рекомендуется как всесезонное, а для средней полосы России – как зимнее. Оно вырабатывается на загущенной основе с композицией присадок, обеспечивающих необходимые вязкостные, низкотемпературные и антипенные свойства. Это масло позволяет работать с гидроприводами без предварительного разогрева и круглогодично эксплуатировать гидроприводные машины без сезонной смены масла в интервале температур –53...+53 °С. Гидравлическое масло МГЕ-46В (аналог МГ-30) предназначено в качестве летнего для эксплуатации гидроприводов мобильных машин и промышленного оборудования на открытом воздухе в районах с умеренным климатом и как всесезонное для районов с теплым климатом. Его используют в интервале температур –20...+75 °С, а вырабатывают из нефти селективной очисткой с добавлением антиокислительной, антипенной присадок и депрессатора, понижающего температуру застывания. МГЕ-46В отличается хорошей смазывающей способностью, стойкостью против окисления и отложения смолистых осадков, а также против вспенивания. 

Недостатки гидропривода с замкнутым потоком:

• Ограниченность применения (в основном в механизмах вращательного движения и в редких случаях в механизмах возвратно-поступательного движения с гидроцилиндрами с двусторонним штоком). У гидроприводов с разомкнутым потоком таких ограничений нет.
• Необходимость применения воздушно-масляных теплообменников (при подтверждении тепловым расчетом) в связи с ограниченным теплоотводом между гидропередачей и окружающей средой. 

Периодичность замены основных сортов гидравлических масел – 3500...4000 ч, но не реже 1 раза в 2 года. При отсутствии основных сортов гидравлических масел допускается их сезонная замена: зимой МГ-22А, летом И-30А.


Надежная и длительная эксплуатация насосов, гидромоторов и других компонентов гидропривода возможна только при условии обеспечения эффективной фильтрации рабочей жидкости от механических примесей и влаги. Очистка РЖ должна соответствовать 19/15 классу по нормам ISO 4406 или эквивалентна 13...15-му классу чистоты по ГОСТ 17216–2001. При этом абсолютная тонкость фильтрации 25 мкм. Для гидроприводов с повышенными требованиями к надежности и долговечности необходима фильтрация РЖ до 16/13 класса по нормам ISO 4406 или эквивалентная 11-му классу чистоты по ГОСТ 17216–2001. Абсолютная тонкость фильтрации 10 мкм.  
Сегодня на российский рынок из-за рубежа поставляется широкая номенклатура современных компонентов гидропривода. Отдельные детали или агрегаты можно использовать не только для восстановления изношенных узлов и агрегатов, но и самостоятельно собирать гидравлические устройства хорошего качества.