

Поршневые гидроцилиндры СН (210 бар, средняя серия)

ЦИЛИНДРЫ СЕРИИ СН

Соответсвуют стандарту ISO 6020/2 - 1991 - DIN 24554

Рабочее давление 21 Мра Максимальное давление до 25 Мра Дапазон рабочих температур от –20 до 80°С Допуск на ход от 0 до 1.2mm для длины хода до 1000mm, от 0 до 2.5mm для более длиноходных 10 типоразмеров гильз, от 25 до 200mm, до 3-х типов штока на один диаметр

ВОЗМОЖНЫЕ ОПЦИИ:

Торможение поршня в конце хода цилиндра, регулироемое с двух сторон Дренаж штокового уплотнения Двойные уплотнения штока Широкий набор уплотнений для различных масел и температур Индуктивные датчики контроля конца хода Сапуны с двух сторон цилиндра

Nº	ЭЛЕМЕНТ	МАТЕРИАЛ	Nº	ЭЛЕМЕНТ	МАТЕРИАЛ
1	Шток	Хромированная сталь	13	Стопорное кольцо	Сталь
2	Грязесъемная манжета	Полиуретан	14	Задняя втулка демпфера	Бронза
3	Фланцы	Сталь	15	Самоконтр. гайка	Сталь
4	Уплотнения штока	Полиуретан/фторопласт	16	Поршневая крышка	Сталь
4,1	2-е уплотнение штока (опция L)	Нитриловая резина	17	Направляющая втулка	Фторопласт
5	Направляющая втулка	Железо	18	Уплотнение поршня	Полиуретан/фторопласт
6	Уплотнительное кольцо	Нитр. рез.+ полиуретан	19	Поршень	Сталь
7	Штоковая крышка	Сталь	20	Поршневой демпфер	Сталь
8	Уплотнительное кольцо	Нитр. рез.+ полиуретан	21	Упорная втулка	Сталь
9	Гильза	Сталь	22	Корпус дросселя	Сталь
10	Шпилька	Сталь	23	Регулировачный винт	Сталь
11	Штифт	Сталь	24	Контргайка	Сталь
12	Плунжер поршн. демпфера	Сталь	25	Уплотнительное кольцо	Нитриловая резина

СН (210 бар, средняя серия)

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ПЕРЕД ЗАКАЗОМ ЦИЛИНДРА

Не превышайте максимальное давление для данного типа цилиндра.

Рекомендуем выбирать цилиндры с ходом немного больше (на несколько мм) чем требуемый рабочий ход, для предупреждения использования демпферов как ограничители конца хода.

Проверьте чтобы уплотнения соответствовали условиям эксплуатации: типу рабочей жидкости, температуре и скорости.

1.1 ГИДРОЦИЛИНДРЫ СЕРИИ СН

Эти цилиндры по размерам соответсвуют стандарту ISO 6020/2 - DIN 24554

- изготавливаются по CNC технологии из высококачественных материалов, это обеспечивает высокую надежность и долговечность
- стандартизация узлов гидроцилиндра существенно облегчает ремонт
- могут быть укомплектованны демпферами с двух сторон.

1.2 ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ЦИЛИНДРОВ СЕРИИ СН

- максимальное давление до 25 Мра (250 bar)
- рабочее давление до 21 Мра (210 bar)

1.3 ГИЛЬЗА ЦИЛИНДРА

- изготавливаются из высококачественных, горячекатанных и холоднотянутых, стальных труб, с последующей шлифовкой внутренней поверхности (шероховатость Rd < 0.4 мкм)

1.4 ШТОК

 штоки изготавливаются из высококачественной хромированной стальи, с минимальным напряжением пластической деформации 700 Н/мм.² Специальная поверхностная обработка обеспечивает защиту от повреждений и долгий срок службы уплотнений. Максимальная величина шероховатостей 0,2 мкм.

1.5 КРЫШКА ЦИЛИНДРА

 крышки цилиндров производятся из стали, их конструкция обеспечивает соосность между гильзой цилиндра, направляющей штока и штоком. Увеличенная ширина направляющей снижает нагрузку на шток при недостатке жидкости.

1.6 РАСПОЛОЖЕНИЕ ВХОДНЫХ КАНАЛОВ, САПУНОВ И РЕГУЛЯТОРА ДЕМПФИРОВАНИЯ

Для всех моделей, за исключением PI, входные каналы располагаются на стороне 1, регулятор демпфирования на стороне 3 и сапуны на стороне 2. Для исполнения PI, входные каналы располагаются на стороне 1, демпфирующее приспособление на стороне 4, сапуны на стороне 2.

1.7 ПОРШЕНЬ

 поршень изготавливается из специальных материалов, и специально обработан для обеспечения соосности между штоковым демпфером, гильзой цилиндра и передней втулкой демпфера.
Кроме этого, благодаря большой площади соприкосновения поршня с гильзой цилиндра, минимизируются отклонения штока, которые происходят из-за внешней радиальной нагрузки.

5-11

1.8 ДЕМПФИРОВАНИЕ В КОНЦЕ ХОДА

Торможение в конце хода цилиндра обычно ипользуется на цилиндрах работающих при скоростях выше > 0,1 м/с, или когда приложена вертикальная нагрузка на цилиндр. Демпфирование также предохраняет оборудование в случае различного рода отказов.

Данная формула позволяет рассчитать максимальную массу демпфирования, исходя из диаметра цилиндра (демпфирующей зоны), подаваемого давления, длины демпфирующей зоны и рабочей скорости хода.

$$M = \frac{(P_2 \cdot S - P_1 \cdot A) \cdot 2 \cdot L_f}{V_0^2} \cdot 10^{-2}$$
 [Kr]

р₁ = подаваемое давление (бар)

V₀ = раб. скорость хода (м/с)

 L_1 = Длина демп. зоны L_{f1} или L_{f2} (мм)

 p_2 = макс. давление 250 бар

S = Площадь демп. зоны S_1 или S_2 (см²)

А = Площадь поршня (см²)

* Расчет по данной формуле является приближенным

🖉 цилиндра (мм)	25	32	40	50	63	80	100	125	160	200
S₁ (cm ²) перед штока	1,77	3,52	5,50	7,68	13,07	21,98	35,51	51,81	98,94	144,37
S ₂ (cm ²) зад штока	4,52	6,91	11,43	18, 5	29, 39	46,45	74,70	118,86	190,79	303,83
L _{f1} (mm) перед штока	19	19	28	29	29	29	31	31	35	38
L _{f2} (mm) зад штока	19	19	28	29	29	29	29	29	40	40
A (cm ²)	4,9	8	12,6	19, 6	31,2	50, 3	78,5	122,7	201,1	314,2

Исодные данные для расчета

1.9 НАСТРОЙКА ДЕМПФИРОВАНИЯ

Для точной работы демпфирующего устройства, оба конца цилиндра оснащены игольчатыми клапанами, они обозначены на рисунках ниже. Эти устройства предохранены от случайного выкручивания, и оснащены SEAL-LOCK контргайкой, для обеспечения хорошего уплотнения будьте аккуратны при затягивании гайки после настройки демпфера.

В таблице ниже указаны тип и размеры этих устройств, в зависимости от диаметра цилиндра.

Ø цилиндра	Тип	Н (мм)	СН (мм)	ch (мм)
25-32	А	10	10	3
40 - 200	В	18	17	5

1.10 НАПРАВЛЯЮЩИЕ ВТУЛКИ

Цилиндры с длиной хода > 1000мм должны быть укомплектованны направляющими втулками, для предупреждения заклинивания, перегрузок и преждевременного износа.

Таблица справа показывает длину направляющей втулки в зависимости от длины хода.

ШТОК (мм)	1001 ÷ 1500	1501 ÷ 2000	2001 ÷ 2500	2501 ÷ 3000
Втулка	1	2	3	4
Длина (мм)	50	100	150	200

1.11 УПЛОТНЕНИЯ

Исходя из особых условий эксплуатации гидроцилиндров таких, как скорость, рабочая жидкость и температура, стандартные уплотнения могут быть выбраны в соответствии с рекомендациями производителя. Места под уплотнения в наших гидроцилиндрах соответствуют требованиям стандарта ISO 7425. Это обеспечивает работу в тяжелонагруженных режимах таких, как очень низкая или очень большая скорости, непрерывная работа, минеральные или синтетические жидкости производителя. Типы уплотнений, соответствующих определенным условиям, указаны далее.

- ТИП А (СТАНДАРТНОЕ),обычно применяется в случае отсутствия особых требований, хорошая герметичность при низких давлениях, используется при скоростях до 0,5 м/с, при температурах от -20 до +80°C, применяется для работы на минеральном масле, воздухе, азоте.
- ТИП В (анти-фрикционное) не рекомендуется, когда положение штока должно быть удержано в определенном положении, и рекомендуется при скоростях до 4м/с, при температурах от -20 до +80°С, применяется для работы на минеральном масле, воздухе, азоте.
- ТИП C (анти-фрикционное, витон) не рекомендуется, когда положение штока должно быть удержано в определенном положении, и рекомендуется при скоростях до 4м/с, при температурах от -20 до +135°C, применяется для работы на пож аробезопасных жидкостях на основе фосфатно-кислых эфирах.
- ТИП E (CGR + PTFE) не рекомендуется, когда положение штока должно быть удержано в определенном положении, и рекомендуется при скоростях до 4м/с, при температурах от -20 до +60°C, применяется для работы на водных гликолях.

1.12 ВХОДНЫЕ КАНАЛЫ

Для того, чтобы уменьшить какую-либо турбулентность и гидроудар в трубах, соединяющих гидроцилиндры, настолько, насколько это возможно, мы рекомендуем, чтобы скорость масла не превышала 6 м/с. Максимально соответствующая этому требованию скорость жидкости в каналах, показана в таблице.

ДИАМ. ВХОДНЫХ КАНАЛОВ	1/4"	3/8"	1/2"	3/4"	1"	1 1⁄4"
МАКС. СКОРОСТЬ ПОТОКА (л/мин)	14	28	48	63	102	162

1.13 САПУН

Сапуны, по вашему требованию, могут быть установлены с двух сторон гидроцилиндра. Сапун установлен заподлицо, что обеспечивает защиту от случайных выкручиваний.

Для выпуска воздуха ослабьте винт, дождитесь появления масла и аккуратно затяните винт.

1.14 ДРЕНАЖ

Дренаж на уплотнении штока, несомненно, лучше обеспечивает герметичность при высокой скорости, в частности в цилиндрах со штоком > 2000мм или в исполнениях, когда штоковая полость постоянно под давлением. Дренажный канал (1/8") обычно расположен на той же оси, что и подводящий канал, и должен соединяться непосредственно с баком. За дополнительной информацией, пожалуйста, обратитесь в технический отдел.

1.15 ДАТЧИКИ ПОЛОЖЕНИЯ

Для контроля положения штока могут быть использованы датчики, вмонтированные в крышки гидроцилиндра. Рабочая температура от -25 до +80°С. Допустимое давление 350 бар. Датчик поставляется с встроенным усилителем (питание постоянного тока от 10 до 30 В), аналоговый выходной транзистор p-n-p до 200мА максимум. В комплекте разъем и кабель (4м). Датчики могут быть установлены на стороне 2 как на штоковых, так и на поршневых крышках для диаметров поршней до 200мм. Они регистрируют крайнее положение поршня.

Диаметр поршня (mm)	DB _{max} (mm)	DC _{max} (mm)
40	77	67
50	75	71
63	72	65
80	74	71
100	73	65
125	71	51
160	71	34
200	67	20

ОГРАНИЧЕНИЯ

в ОА и FA исполнениях датчик монтируется в крышку гидроцилиндра со стороны 3, при этом установка устройства регулятора демпфера невозможна.

в PI исполнениях (диаметр поршня 40 - 50 - 63), перед креплением цилиндра на лапы необходим демонтаж датчиков. Для всех диаметров, в случае наличия сапуна, датчики установлены со стороны устройства регулировки демпфера.

в Ор и FP исполнениях датчик монтируется на поршневой крышке со стороны 3 в сторону входного канала, что не позволяет установить устройство регулятора демпфера для диаметров поршня 25 и 32мм, датчики положения не предусматриваются.

2.1 ПРЕДЕЛЬНАЯ НАГРУЗКА

Когда цилиндр работает на сжатие, не допускайте превышение предельной нагрузки. Таблица 1 показывает наиболее общие типы ограничений. Каждый из них связан с коэффициентом К. Максимальный ход цилиндра L умножается на коэффициент K, получается величина Lv (приведенный ход, Lv = L*K). График 2 показывает зависимость минимального диаметра штока от нагрузки. Точка пересечения Lv (взятая в мм)и действующей силы F (взятая в кH) должна быть ниже характеристической кривой для данного штока.

Пример: гидроцилиндр CD63/28/750/FA/00В (передний фланец) с усилием на штоке 55 кН. В таблице 1 показан коэффициент К, для данного типа монтажа К = 2, приведенный ход Lv = L*K Lv = 750*2 = 1500 м. На графике 2 вы можете проверить, находиться ли точка пересечения Lv и F ниже кривой с диаметром штока О 28мм. Так как условия устойчивости не обеспечиваются, принимаем диаметр штока О 45мм. Следовательно, может быть выбран гидроцилиндр CD63/45/750FA00B, для которого условия устойчивости обеспечиваются.

5-14

ТАБЛИЦА 1

2.2 ЕДИНИЦЫ ИЗМЕРЕНИЯ ДЛЯ РАСЧЕТА УСИЛИЯ И СКОРОСТИ

НАИМЕНОВАНИЕ	СИМВОЛ	ЕДИНИЦЫ ИЗМЕРЕНИЯ
Сечение	S	CM ²
Давление	р	бар
Ø поршня	D	ММ
Ø штока	d	ММ
Скорость	V	м/с
Емкость	Q	л/мин
Масса	m	КГ

ТОЛКАЮЩЕЕ УСИЛИЕ (ХОД+)

2.3 ДИАГРАММЫ СИЛА/ДАВЛЕНИЕ

Поршневые гидроцилиндры СН (210 бар, средняя серия)

Поршневые гидроцилиндры СН (210 бар, средняя серия)

3.1 ВСТРОЕННЫЕ ПЛИТЫ

Цилиндры CH могут быть оснащены плитой по ISO/Cetop (03, 05), для монтажа распределителей прямо на гидроцилиндр.

Цилиндр CH с плитой по ISO/Cetop 03

может быть присоединен к цилиндру с диаметром поршня от 40 до 200мм (минимальный ход 100мм). каналы Р и Т - 3/8" BSP , канал Y - 1/8" BSP .

За дополнительной информацией обратитесь в технический отдел

Цилиндр СН с плитой по ISO/Cetop 05

может быть присоединен к цилиндру с диаметром поршня от 40 до 200мм (минимальный ход 150мм). каналы Р и Т - 3/4" BSP, каналы Х и Ү - 1/4" BSP.

За дополнительной информацией обратитесь в технический отдел.

СЕРИЯ			ПРИМЕР
- •	исполнение по присоединению штока	СН	CH/50/22//100/EB/10 A
Ø ПОРШНЯ	указывается в мм		
Ø ШТОКА	указывается в мм		
	указывается в мм		
ХОД	указывается в мм		
	передние + задние удлиненные шпильки	AP	
	передний фланец	FA	
	задний фланец	FP	
	лапы	PI	
	двойная проушина	CF	
ИСПОЛНЕННИЕ		CM	
	одинарная проушина		
	проушина с шарниром	CS	
	передняя цапфа	OA	
	промежуточная цапфа	01	
	задняя цапфа	OP	
	передние удлиненные шпильки	TA	
	задние удлиненные шпильки	TP	
	передние резьбовые отверстия	ZA	
	задние резьбовые отверстия	ZP	
	без торможения	0	
ТОРМОЖЕНИЕ	переднее торможение	1	
I OI MOMEINE	заднее торможение	2	
	переднее +заднее торможение	3	
	Без направляющей	0	↓
	50mm	1	
НАПРАВЛЯЮЩАЯ	100mm	2	
ПАШ АВЛЛОЩАЛ	150mm	3	
		4	
	200mm		
	полиуретан (стандартное)	A	•
УПЛОТНЕНИЯ	нитрил + фторопласт (антифрикционное)	В	
STRIG THE WAT	витон+фторопласт (высокотемпературное)	С	
	нитрил+карбографит (антифрик. вод. гликоль)	E	
	ОПЦИИ*		4
КОНЕЦ ШТОКА	тип D	D	
	тип F	F	
	передний	G	
САПУН	задний	Н	
	передний + задний		
ДВОЙНОЕ УПЛОТНЕНИЕ ШТОКА		L	
ДРЕНАЖ	со стороны штока	w	
	твердое хромирование, толщиной 0.045мм		
	100ч солевой туман ISO 3768	-	
ОБРАБОТКА ШТОКА		Т	
	Ni-CROMAX30 хромирование, никелирование ASTM В 117 1000ч	Ν	
	Передний	X1	
ДАТЧИКИ ПОЛОЖЕНИЯ			
	Задний	X2	
	передний + задний	X3	
	ISO/Cetop 03	NG03	

* Необходимо указать в алфавитном порядке.

Поршневые гидроцилиндры СН (210 бар, средняя серия)

* В цилиндрах с диаметром поршня 25 и 30 мм, крышка увеличена на 5 мм для установки разъема.

Поршневые гидроцилиндры СН (210 бар, средняя серия)

Поршневые гидроцилиндры СН (210 бар, средняя серия)

* В цилиндрах с диаметром поршня 25 и 32 мм, крышка увеличена на 5 мм для установки разъема.

Поршневые гидроцилиндры СН (210 бар, средняя серия)

Поршневые гидроцилиндры СН (210 бар, средняя серия)

* В цилиндрах с диаметром поршня 25 и 32 мм, крышка увеличена на 5 мм для установки разъема.