ЦИЛИНДРЫ СЕРИИ СН

Соответсвуют стандарту ISO 6020/2 - 1991 - DIN 24554
Рабочее давление 21 Мра
Максимальное давление до 25 Мра
Дапазон рабочих температур от -20 до $80^{\circ} \mathrm{C}$
Допуск на ход от 0 до 1.2 mm для длины хода до 1000 mm , от 0 до 2.5 mm для более длиноходных 10 типоразмеров гильз, от 25 до 200 mm ,
до 3-х типов штока на один диаметр
ВОЗМОЖНЫЕ ОПЦИИ:
Торможение поршня в конце хода цилиндра, регулироемое с двух сторон
Дренаж штокового уплотнения
Двойные уплотнения штока
Широкий набор уплотнений для различных масел и температур
Индуктивные датчики контроля конца хода
Сапуны с двух сторон цилиндра

№	ЭЛЕМЕНТ	МАТЕРИАЛ	№	ЭЛЕМЕНТ	МАТЕРИАЛ
1	Шток	Хромированная сталь	13	Стопорное кольцо	Сталь
2	Грязесъемная манжета	Полиуретан	14	Задняя втулка демпфера	Бронза
3	Фланцы	15	Самоконтр. гайка	Сталь	
4	Уплотнения штока	Полиуретан/фторопласт	16	Поршневая крышка	Сталь
4,1	2-е уплотнение штока (опция L)	Нитриловая резина	17	Направляющая втулка	Фторопласт
5	Направляющая втулка	Железо	18	Уплотнение поршня	Полиуретан/фторопласт
6	Уплотнительное кольцо	Нитр. рез.+ полиуретан	19	Поршень	Сталь
7	Штоковая крышка	Сталь	20	Поршневой демпфер	Сталь
8	Уплотнительное кольцо	Нитр. рез.+ полиуретан	21	Упорная втулка	Сталь
9	Гильза	22	Корпус дросселя	Сталь	
10	Шпилька	23	Регулировачный винт	Сталь	
11	Штифт	24	Контргайка	Сталь	
12	Плунжер поршн. демпфера	Сталь	25	Уплотнительное кольцо	Нитриловая резина

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

ПЕРЕД ЗАКАЗОМ ЦИЛИНДРА

Не превышайте максимальное давление для данного типа цилиндра.
Рекомендуем выбирать цилиндры с ходом немного больше (на несколько мм) чем требуемый рабочий ход, для предупреждения использования демпферов как ограничители конца хода.
Проверьте чтобы уплотнения соответствовали условиям эксплуатации: типу рабочей жидкости, температуре и скорости.

1.1 гидРОцилиндРЫ СЕРИи СН

Эти цилиндры по размерам соответсвуют стандарту ISO 6020/2 - DIN 24554

- изготавливаются по CNC технологии из высококачественных материалов, это обеспечивает высокую надежность и долговечность
- стандартизация узлов гидроцилиндра существенно облегчает ремонт
- могут быть укомплектованны демпферами с двух сторон.

1.2 ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ ЦИЛИНДРОВ СЕРИИ СН

- максимальное давление до 25 Mpa (250 bar)
- рабочее давление до 21 Мpa (210 bar)

1.3 ГИЛЬЗА ЦИЛИНДРА

- изготавливаются из высококачественных, горячекатанных и холоднотянутых, стальных труб, с последующей шлифовкой внутренней поверхности (шероховатость $\mathrm{Rd}<0.4$ мкм)

1.4 ШтОК

- штоки изготавливаются из высококачественной хромированной стальи, с минимальным напряжением пластической деформации $700 \mathrm{H} /$ мм 2. Специальная поверхностная обработка обеспечивает защиту от повреждений и долгий срок службы уплотнений. Максимальная величина шероховатостей 0,2 мкм.

1.5 КРЫШКА ЦИЛИНДРА

- крышки цилиндров производятся из стали, их конструкция обеспечивает соосность между гильзой цилиндра, направляющей штока и штоком. Увеличенная ширина направляющей снижает нагрузку на шток при недостатке жидкости.

1.6 РАСПОЛОЖЕНИЕ ВХОДНЫХ КАНАЛОВ, САПУНОВ И РЕГУЛЯТОРА ДЕМПФИРОВАНИЯ

Для всех моделей, за исключением PI , входные каналы располагаются на стороне 1, регулятор демпфирования на стороне 3 и сапуны на стороне 2.
Для исполнения PI, входные каналы располагаются на стороне 1, демпфирующее приспособление на стороне 4, сапуны на стороне 2.

1.7 ПОРШЕНЬ

- поршень изготавливается из специальных материалов, и специально обработан для обеспечения соосности между штоковым демпфером, гильзой цилиндра и передней втулкой демпфера.
Кроме этого, благодаря большой площади соприкосновения поршня с гильзой цилиндра, минимизируются отклонения штока, которые происходят из-за внешней радиальной нагрузки.

1.8 ДЕМПФИРОВАНИЕ В КОНЦЕ ХОДА

Торможение в конце хода цилиндра обычно ипользуется на цилиндрах работающих при скоростях выше $>0,1$ м/с, или когда приложена вертикальная нагрузка на цилиндр. Демпфирование также предохраняет оборудование в случае различного рода отказов.
Данная формула позволяет рассчитать максимальную массу демпфирования, исходя из диаметра цилиндра (демпфирующей зоны), подаваемого давления, длины демпфирующей зоны и рабочей скорости хода.

$$
M=\frac{\left(p_{2} \cdot S-p_{1} \cdot A\right) \cdot 2 \cdot L_{f}}{V_{0}^{2}} \cdot 10^{-2}{ }^{*}[\mathrm{\kappa} \Gamma]
$$

$\mathrm{p}_{1}=$ подаваемое давление (бар) $\quad \mathrm{p}_{2}=$ макс. давление 250 бар
$V_{0}=$ раб. скорость хода (м/c) $\quad S=$ Площадь демп. зоны S_{1} или $\mathrm{S}_{2}\left(\right.$ см $\left.^{2}\right)$
$\mathrm{L}_{1}=$ Длина демп. зоны $\mathrm{L}_{\mathrm{f} 1}$ или $\mathrm{L}_{\mathrm{f} 2}$ (мм) $\quad \mathrm{A}=$ Площадь поршня $\left(\mathrm{cm}^{2}\right.$)

* Расчет по данной формуле является приближенным

Исодные данные для расчета

$\boldsymbol{\varnothing}$ цилиндра (мм)	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 3}$	$\mathbf{8 0}$	$\mathbf{1 0 0}$	$\mathbf{1 2 5}$	$\mathbf{1 6 0}$	$\mathbf{2 0 0}$
$\mathbf{S}_{\mathbf{1}}\left(\mathrm{cm}^{2}\right)$ перед штока	1,77	3,52	5,50	7,68	13,07	21,98	35,51	51,81	98,94	144,37
$\mathbf{S}_{\mathbf{2}}\left(\mathrm{cm}^{2}\right)$ зад штока	4,52	6,91	11,43	18,5	29,39	46,45	74,70	118,86	190,79	303,83
$\mathrm{~L}_{\mathrm{f} 1}(\mathrm{~mm})$ перед штока	19	19	28	29	29	29	31	31	35	38
$\mathrm{~L}_{\mathrm{f} 2}(\mathrm{~mm})$ зад штока	19	19	28	29	29	29	29	29	40	40
$\mathrm{~A}\left(\mathrm{~cm}^{2}\right)$	4,9	8	12,6	19,6	31,2	50,3	78,5	122,7	201,1	314,2

1.9 НАСТРОЙКА ДЕМПФИРОВАНИЯ

Для точной работы демпфирующего устройства, оба конца цилиндра оснащены игольчатыми клапанами, они обозначены на рисунках ниже. Эти устройства предохранены от случайного выкручивания, и оснащены SEAL-LOCK контргайкой, для обеспечения хорошего уплотнения будьте аккуратны при затягивании гайки после настройки демпфера.
В таблице ниже указаны тип и размеры этих устройств, в зависимости от диаметра цилиндра.

$\boldsymbol{\varnothing}$ цилиндра	Тип	\mathbf{H} $($ мм $)$	CH $($ мм $)$	ch $($ мм $)$
$\mathbf{2 5 - 3 2}$	А	10	10	3
$\mathbf{4 0 - 2 0 0}$	В	18	17	5

1.10 НАПРАВЛЯЮЩИЕ ВТУЛКИ

Цилиндры с длиной хода > 1000мм должны быть укомплектованны направляющими втулками, для предупреждения заклинивания, перегрузок и преждевременного износа.
Таблица справа показывает длину направляющей втулки в зависимости от длины хода.

Шток (мм)	1001 \div 1500	1501 \div 2000	2001 \div 2500	2501 \div 3000
Втулка	1	2	3	4
Длина (мм)	50	100	150	200

1.11 УПЛОТНЕНИЯ

Исходя из особых условий эксплуатации гидроцилиндров таких, как скорость, рабочая жидкость и температура, стандартные уплотнения могут быть выбраны в соответствии с рекомендациями производителя. Места под уплотнения в наших гидроцилиндрах соответствуют требованиям стандарта ISO 7425. Это обеспечивает работу в тяжелонагруженных режимах таких, как очень низкая или очень большая скорости, непрерывная работа, минеральные или синтетические жидкости производителя. Типы уплотнений, соответствующих определенным условиям, указаны далее.

ТИП А (СТАНДАРТНОЕ),обычно применяется в случае отсутствия особых требований, хорошая герметичность при низких давлениях, используется при скоростях до 0,5 м/с, при температурах от -20 до $+80^{\circ} \mathrm{C}$, применяется для работы на минеральном масле, воздухе, азоте.
ТИП В (анти-фрикционное) не рекомендуется, когда положение штока должно быть удержано в определенном положении, и рекомендуется при скоростях до 4м/с, при температурах от -20 до $+80^{\circ} \mathrm{C}$, применяется для работы на минеральном масле, воздухе, азоте.

ТИП С (анти-фрикционное, витон) не рекомендуется, когда положение штока должно быть удержано в определенном положении, и рекомендуется при скоростях до $4 м / с$, при температурах от -20 до $+135^{\circ} \mathrm{C}$, применяется для работы на пож аробезопасных жидкостях на основе фосфатно-кислых эфирах.

ТИП E (CGR + PTFE) не рекомендуется, когда положение штока должно быть удержано в определенном положении, и рекомендуется при скоростях до $4 м /$ с, при температурах от -20 до $+60^{\circ} \mathrm{C}$, применяется для работы на водных гликолях.

1.12 ВХОДНЫЕ КАНАЛЫ

Для того, чтобы уменьшить какую-либо турбулентность и гидроудар в трубах, соединяющих гидроцилиндры, настолько, насколько это возможно, мы рекомендуем, чтобы скорость масла не превышала 6 м/с. Максимально соответствующая этому требованию скорость жидкости в каналах, показана в таблице.

дИАМ. входНыХ КАНАЛОВ	1/4"	3/8"	1/2"	3/4"	$1 "$	$11 / 4 "$
МАКС. СКОРОСТЬ ПОТОКА (л/мин)	14	28	48	63	102	162

1.13 САПУН

Сапуны, по вашему требованию, могут быть установлены с двух сторон гидроцилиндра. Сапун установлен заподлицо, что обеспечивает защиту от случайных выкручиваний.
Для выпуска воздуха ослабьте винт, дождитесь появления масла и аккуратно затяните винт.

1.14 ДРЕНАЖ

Дренаж на уплотнении штока, несомненно, лучше обеспечивает герметичность при высокой скорости, в частности в цилиндрах со штоком > 2000мм или в исполнениях, когда штоковая полость постоянно под давлением. Дренажный канал ($1 / 8$ ") обычно расположен на той же оси, что и подводящий канал, и должен соединяться непосредственно с баком. За дополнительной информацией, пожалуйста, обратитесь в технический отдел.

1.15 ДАТЧИКИ ПОЛОЖЕНИЯ

Для контроля положения штока могут быть использованы датчики, вмонтированные в крышки гидроцилиндра. Рабочая температура от -25 до $+80^{\circ} \mathrm{C}$. Допустимое давление 350 бар. Датчик поставляется с встроенным усилителем (питание постоянного тока от 10 до 30 B), аналоговый выходной транзистор p-n-p до 200мА максимум. В комплекте разъем и кабель (4м). Датчики могут быть установлены на стороне 2 как на штоковых, так и на поршневых крышках для диаметров поршней до 200мм. Они регистрируют крайнее положение поршня.

Диаметр поршня (mm)	$\mathrm{DB}_{\max }(\mathrm{mm})$	$\mathrm{DC} \max ^{(\mathrm{mm})}$
$\mathbf{4 0}$	77	67
$\mathbf{5 0}$	75	71
$\mathbf{6 3}$	72	65
$\mathbf{8 0}$	74	71
$\mathbf{1 0 0}$	73	65
$\mathbf{1 2 5}$	71	51
$\mathbf{1 6 0}$	71	34
$\mathbf{2 0 0}$	67	20

СН (210 бар, средняя серия)

ОГРАНИЧЕНИЯ
в OA и FA исполнениях датчик монтируется в крышку гидроцилиндра со стороны 3, при этом установка устройства регулятора демпфера невозможна.
в PI исполнениях (диаметр поршня 40-50-63), перед креплением цилиндра на лапы необходим демонтаж датчиков. Для всех диаметров, в случае наличия сапуна, датчики установлены со стороны устройства регулировки демпфера.
в Op и FP исполнениях датчик монтируется на поршневой крышке со стороны 3 в сторону входного канала, что не позволяет установить устройство регулятора демпфера для диаметров поршня 25 и 32мм, датчики положения не предусматриваются.

2.1 ПРЕДЕЛЬНАЯ НАГРУЗКА

Когда цилиндр работает на сжатие, не допускайте превышение предельной нагрузки. Таблица 1 показывает наиболее общие типы ограничений. Каждый из них связан с коэффициентом K . Максимальный ход цилиндра L умножается на коэффициент K, получается величина Lv (приведенный ход, Lv = L*K). График 2 показывает зависимость минимального диаметра штока от нагрузки. Точка пересечения Lv (взятая в мм)и действующей силы F (взятая в кH) должна быть ниже характеристической кривой для данного штока.
Пример: гидроцилиндр CD63/28/750/FA/OOB (передний фланец) с усилием на штоке 55 kH . В таблице 1 показан коэффициент K , для данного типа монтажа $\mathrm{K}=2$, приведенный ход $L v=L * K L v=750 * 2=1500$ м. На графике 2 вы можете проверить, находиться ли точка пересечения Lv и F ниже кривой с диаметром штока O 28мм. Так как условия устойчивости не обеспечиваются, принимаем диаметр штока О 45 мм. Следовательно, может быть выбран гидроцилиндр CD63/45/750FA00B, для которого условия устойчивости обеспечиваются.

График 2

F (KN)

СН (210 бар, средняя серия)

ТАБЛИЦА 1

2.2 ЕДИНИЦЫ ИЗМЕРЕНИЯ ДЛЯ РАСЧЕТА УСИЛИЯ И СКОРОСТИ

НАИМЕНОВАНИЕ	СИМВОЛ	ЕДИНИцы ИЗМЕРЕНИя
Сечение	s	см 2
Давление	p	бар
\varnothing поршня	D	мм
\varnothing штока	d	мм
Скорость	V	м/с
Емкость	Q	л/мин
Масса	m	кг

ТОЛКАЮЩЕЕ УСИЛИЕ (ХОД+)

$$
\left.F_{1}=\left(p_{1} S_{1}\right) \quad \text { (кг }\right)
$$

ТЯНУЩЕЕ УСИЛИЕ (ХОД -)

$$
\mathrm{F}_{2}=\left(\mathrm{p}_{2} \mathrm{~S}_{2}\right)
$$

ТОЛКАЮЩАЯ СКОРОСТЬ (ХОД+)

$$
\mathrm{V}_{1}=\mathrm{Q} /\left(6 \quad \mathrm{~S}_{1}\right) \quad(\mathbf{м} / \mathbf{c})
$$

ТЯНУЩАЯ СКОРОСТЬ (ХОД -)

$$
\mathrm{V}_{2}=\mathrm{Q} /\left(6 \quad \mathrm{~S}_{2}\right) \quad \text { (м/с) }
$$

$$
S_{1} \frac{D^{2}}{4100}\left(\mathrm{~cm}^{2}\right) \quad S_{2} \frac{\left(D^{2} d^{2}\right)}{4100}\left(\text { см }^{2}\right)
$$

2.3 ДИАГРАММЫ СИЛА/ДАВЛЕНИЕ

Поршневые гидроцилиндры

СН (210 бар, средняя серия)

СН (210 бар, средняя серия)

3.1 ВСТРОЕННЫЕ ПЛИТЫ

Цилиндры CH могут быть оснащены плитой по ISO/Cetop $(03,05)$, для монтажа распределителей прямо на гидроцилиндр.

Цилиндр CH с плитой по ISO/Cetop 03
может быть присоединен к цилиндру с диаметром поршня от 40 до 200мм (минимальный ход 100мм).
каналы P и T-3/8" BSP , канал Y-1/8" BSP.
За дополнительной информацией обратитесь в технический отдел

Цилиндр CH с плитой по ISO/Cetop 05
может быть присоединен к цилиндру с диаметром поршня от 40 до 200мм (минимальный ход 150мм). каналы P и T-3/4" BSP, каналы X и Y - 1/4" BSP.
За дополнительной информацией обратитесь в технический отдел.

[^0]
РАЗМЕРЫ КОНЦОВ ШТОКА

Конец штока, типы M и D
Bce, кроме FA присоединение (ISO ME5)

vo
Конец штока, тип F
Все, кроме FA присоединение (ISO ME5)

$\xrightarrow{\text { VJ }}-1$

Конец штока, тип M и D
FA присоединение (ISO ME5)

Конец штока, тип F
FA присоединение (ISO ME5)

\varnothing	N°	MM	Тип ISO 6020/2	1991)	Тип D DIN 245		Тип		B	D	NA	WF	WH	VE	VJ	Тол	пр		ение
			KK	A	KK	A	KF	A								$\mathrm{VL}_{\text {min }}$	RD	VJ	WE
25	1	12	M10x1,25	14	M10x1,25	14	M8x1	14	24	10	11	25	15	16	6	3	38	6	10
25	2	18	M14x1,5	18	M10x1,25	14	M12x1,25	18	30	15	17	25	15	16	6	3	38	6	10
32	1	14	M12x1,25	16	M12x1,25	16	M10x1,25	16	26	12	13	35	25	22	12	3	42	12	10
32	2	22	M16x1,5	22	M12x1,25	16	M16x1,5	22	34	18	21	35	25	22	12	3	42	12	10
40	1	18	M14x1,5	18	M14x1,5	18	M12x1,25	18	30	15	17	35	25	22	6	3	62	12	10
40	2	28	M20x1,5	28	M14x1,5	18	M20x1,5	28	42	22	26	35	25	22	12				
	1	22	M16x1,5	22	M16x1,5	22	M16x1,5	22	34	18	21	41	25	25	9				
50	2	36	M27x2	36	M16x1,5	22	M27x2	36	50	30	34	41	25	25	9	4	74	9	16
	3*	28*	M20x1,5	28	-	-	M20x1,5	28	42	22	26	41	25	25	9				
	1	28	M20x1,5	28	M20x1,5	28	M20x1,5	28	42	22	26	48	32	28	12		75	12	
63	2	45	M 33×2	45	M20x1,5	28	M 33×2	45	60	39	43	48	32	29	13	4	88	13	16
	3*	36*	M27x2	36	-	-	M27x2	36	50	30	34	48	32	29	13		88	13	
	1	36	M27x2	36	M27x2	36	M27x2	36	50	30	34	51	31	29	9		82		
80	2	56	M42x2	56	M27x2	36	M42x2	56	72	48	54	51	31	29	9	4	10	9	20
	3*	45*	M 33×2	45	-	-	M33x2	45	60	39	43	51	31	29	9				
	1	45	M33x2	45	M33x2	45	M33x2	45	60	39	43	57	35	32	10		92		
100	2	70	M48x2	63	M 33×2	45	M48x2	63	88	62	68	57	35	32	10	5	125	10	22
	3*	56*	M42x2	56	-	-	M42x2	56	72	48	54	57	35	32	10		125		
	1	56	M42x2	56	M42x2	56	M42x2	56	72	48	54	57	35	32	10		105		
125	2	90	M64x3	85	M42x2	56	M64x3	85	108	80	88	57	35	32	10	5	150	10	22
	3*	70*	M48x2	63	-	-	M48x2	63	88	62	68	57	35	32	10				
160	1	70	M48x2	63	M48x2	63	M48x2	63	88	62	68	57	32	32	7	5	125	7	25
	2	110	M80x3	95	M 48 x 2	63	M80x3	95	133	100	108	57	32	32	7		170		
	3*	90*	M64x3	85	-	-	M64x3	85	108	80	88	57	32	32	7				
200	1	90	M64x3	85	M64x3	85	M64x3	85	108	80	88	57	32	32	7	5	150	7	25
	2	140	M100x3	112	M64x3	85	M100x3	112	163	128	138	57	32	32	7		210		
	3*	110*	M80x3	95	-	-	M80x3	95	133	100	108	57	32	32	7				

* Диаметры не стандартизированы по ISO-DIN

TA: (ISO тип MX3)

TP: (ISO тип MX2)

AP: (ISO тип MX1)

Диаметр	AA	BB	DD	E	EE	KB	TG	WH	ZJ	Y	PJ
$\mathbf{2 5}$	40	19	$\mathrm{M} 5 \times 0,8$	40^{*}	$1 / 4^{\prime \prime}$	6,8	28,3	15	114	50	53
$\mathbf{3 2}$	47	24	$\mathrm{M} 6 \times 1$	45^{*}	$1 / 4^{\prime \prime}$	7,8	33,2	25	128	60	56
$\mathbf{4 0}$	59	35	$\mathrm{M} 8 \times 1$	60	$3 / 8^{\prime \prime}$	10,6	41,7	25	153	62	73
$\mathbf{5 0}$	74	46	$\mathrm{M} 12 \times 1,25$	75	$1 / 2^{\prime \prime}$	14,8	52,3	25	159	67	74
$\mathbf{6 3}$	91	46	$\mathrm{M} 12 \times 1,25$	90	$1 / 2^{\prime \prime}$	14,8	64,3	32	168	71	80
$\mathbf{8 0}$	117	59	$\mathrm{M} 16 \times 1.5$	115	$3 / 4^{\prime \prime}$	18	82,7	31	190	77	93
$\mathbf{1 0 0}$	137	59	$\mathrm{M} 16 \times 1,5$	126	$3 / 4^{\prime \prime}$	18	96,9	35	203	82	101
$\mathbf{1 2 5}$	178	81	$\mathrm{M} 22 \times 1,5$	165	$1 "$	25	125,9	35	232	86	117
$\mathbf{1 6 0}$	219	92	$\mathrm{M} 27 \times 2$	196	$1 "$	30,8	154,9	32	245	86	121
$\mathbf{2 0 0}$	269	115	M30x2	240	$11 / 4 "$	33,2	190,2	32	299	98	158,5

[^1]

CM: (ISO тип MP3)

CF: (ISO тип MP1)

CS: (ISO тип MP5)

\varnothing	CB	CD	CW	CX	E	EE	EP	EW	EX	L	LR	LT	MR	MS	WH	XC	XO	Y	PJ
$\mathbf{2 5}$	12	10	6	12	40^{*}	$1 / 4^{\prime \prime}$	8	12	10	13	12	16	12	20	15	127	130	50	53
$\mathbf{3 2}$	16	12	8	16	45^{*}	$1 / 4^{\prime \prime}$	11	16	14	19	17	20	17	22,5	25	147	148	60	56
$\mathbf{4 0}$	20	14	14	20	60	$3 / 8^{\prime \prime}$	13	20	16	19	17	25	17	29	25	172	178	62	73
$\mathbf{5 0}$	30	20	15	25	75	$1 / 2^{\prime \prime}$	17	30	20	32	29	31	29	33	25	191	190	67	74
$\mathbf{6 3}$	30	20	15	30	90	$1 / 2^{\prime \prime}$	19	30	22	32	29	38	29	40	32	200	206	71	80
$\mathbf{8 0}$	40	28	20	40	115	$3 / 4^{\prime \prime}$	23	40	28	39	34	48	34	50	31	229	238	77	93
$\mathbf{1 0 0}$	50	36	25	50	126	$3 / 4^{\prime \prime}$	30	50	35	54	50	58	50	62	35	257	261	82	101
$\mathbf{1 2 5}$	60	45	30	60	165	$1^{\prime \prime}$	38	60	44	57	53	72	53	80	35	289	304	86	117
$\mathbf{1 6 0}$	70	56	35	80	196	$1^{\prime \prime}$	47	70	55	78	59	107	59	98	32	308	337	86	121
$\mathbf{2 0 0}$	80	70	40	100	240	$11 / 4^{\prime \prime}$	57	80	70	97	78	131	78	120	32	381	415	98	158,5

[^2]

[^3]
Поршневые гидроцилиндры СН (210 бар, средняя серия)

EB:

3

\varnothing	E	EE	F	FB	G	LH	R	SB	ST	SV	SW	TO	TS	UO	US	WE	WF	WH	XS	ZM	Y	PJ1
25	40^{*}	$1 / 4^{\prime \prime}$	10	5,5	40	19	27	6,6	8,5	88	8	51	54	65	72	16	25	15	33	154	50	54
32	45^{*}	$1 / 4^{\prime \prime}$	10	6,6	40	22	33	9	12,5	88	10	58	63	70	84	22	35	25	45	178	60	58
40	60	$3 / 8^{\prime \prime}$	10	11	45	31	41	11	12,5	105	10	87	83	110	103	22	35	25	45	195	62	71
50	75	$1 / 2^{\prime \prime}$	16	14	45	37	52	14	19	99	13	105	102	130	127	25	41	25	54	207	67	73
63	90	$1 / 2^{\prime \prime}$	16	14	45	44	65	18	26	93	17	117	124	145	161	29	48	32	65	223	71	81
80	115	$3 / 4^{\prime \prime}$	20	18	50	57	83	18	26	110	17	149	149	180	186	29	51	31	68	246	77	92
100	126	$3 / 4^{\prime \prime}$	22	18	50	63	97	26	32	107	22	162	172	200	216	32	57	35	79	265	82	101
125	165	$1^{\prime \prime}$	22	22	58	82	126	26	32	131	22	208	210	250	254	32	57	35	79	289	86	117
160	196	$1^{\prime \prime}$	25	26	58	101	155	33	38	121	29	253	260	300	318	32	57	32	86	293	86	121
200	240	$11 / 4^{\prime \prime}$	25	33	76	122	190	39	44	169	35	300	311	360	381	32	57	32	92	353	98	157

[^4]
СН (210 бар, средняя серия)

* В цилиндрах с диаметром поршня 25 и 32 мм, крышка увеличена на 5 мм для установки разъема.

[^0]: * Необходимо указать в алфавитном порядке.

[^1]: * В цилиндрах с диаметром поршня 25 и 32 мм, крышка увеличена на 5 мм для установки разъема.

[^2]: * В цилиндрах с диаметром поршня 25 и 32 мм, крышка увеличена на 5 мм для установки разъема.

[^3]: * В цилиндрах с диаметром поршня 25 и 32 мм, крышка увеличена на 5 мм для установки разъема.

[^4]: * В цилиндрах с диаметром поршня 25 и 32 мм, крышка увеличена на 5 мм для установки разъема.

